

ACTIVE CONTROL OF NEARWALL FLOW IN SUBSONIC DIFFUSER UNDER THE INFLUENCE OF PLASMA

V. Vinogradov, <u>D. Komratov</u>, A. Makarov CIAM I. Esakov, K. Aleksandrov, L. Severinov MRI of RAS

9th International Workshop on Microwave Discharges: Fundamentals and Applications

Cordoba, Spain, 7th - 11th September 2015

Necessity flow control

Flow control methods

- Passive gas dynamic influence
 - Profiling channels
 - Installing interceptors
- Active influence
 - Injection, bleeding
 - Dielectric barrier discharge
 - Synthetic jet
 - Microwave plasma discharge

Microwave plasma discharge

CiAV

- I. Supercritical diffuse discharge
- II. Supercritical streamer discharge
- III. Subcritical diffuse discharge
- IV. Subcritical streamer discharge
- V. Deep subcritical streamer discharge

The transition from a streamer to diffuse discharge with decreasing pressure

Photo of microwave discharge P^{*}∞ = 1 atm, T^{*} = 290 K, M=0

* Abstract of dissertation for the degree of Doctor "discharges in gases medium and high pressure in the quasi-optical electromagnetic wave beams the microwave range," I. Esakov

Advantages of microwave discharge application

- High efficiency energy input power supplies into the discharge
- Proven production technology, simplicity and cheap equipment
- Instantaneous energy supply
- Possibility localization of energy input area
- Possibility of pulse-continuous operation mode realization to reduce input power levels

Problems of microwave discharge application

- High erosive effect on the electrode material
- Desirable presence of free electrons source for initiation of stable plasma discharge
- Mass-dimensional limitations of microwave equipment and waveguide schemes in a practical application
- Influence of the electrode unit and applied channel constructive performance (dimensions, placement, material and etc.) on initiation of discharge and stability operation

Experimental model

Experimental conditions $P_{\infty}^* = 1 \text{ atm}, T^* = 290 \text{ K}$ $M_{in} = 0.1 - 0.8$ $Re_{in} = (1,2 - 8,5) \times 10^5$ $\tau_{discharge} = 100 - 300 \,\mu\text{s}$ $f_{pulse} = 100 - 200 \text{ Hz}$ $S = (1-6) \times 10^{-4}$ $U_{magnetic} = 180 - 200 \text{ V}$ $P_{pulse} = 6 \text{ kW}$ $E_0 = 400 \text{ V/cm}$ $\lambda_{wafe} = 12,4 \text{ cm}$

Channel diffuser ratio – 1,76

Scheme of test channel

CiAV

1 - taken air from the atmosphere, 2 - lemniskate intake, 3 - straight section, 4 - receiver of static pressure, 5 - total pressure probes , 6 - a curved part of channel, 7 – sidewalls, 8 - smoothing section, 9 – to suction exhauster machines

Measurement accuracy of pressure sensors "Honeywell" (0.3-0.8) %

Arrangement of receivers pressure

Photo of channel installed in CIAM's test facility

CiAV

Photo of plasma discharges initiated by MW radiation in the flow at $M_{in} = 0.5$ 1 – tested channel, 2 – MW plasma discharges, 3 – magnetron, 4 – waveguide

Photo of discharges initiated by MW radiation at incoming flow $M_{in} = 0.8, f = 200 \text{ Hz}, \tau = 300 \text{ }\mu\text{s}$

Scheme of electrodes installation

CiAV

9

Types of electrode units

CIAN

Unit Nº2 – a convergent arrangement of electrodes

Unit Nº3 – a pairwise convergent arrangement of electrodes

Experimental results

Distribution of the static pressure along the upper and lower surfaces of channel for parallel and pairwise converging electrode units with and without energy supply

Numerical simulation of flow in the channel

<u>A mathematical model, grid and boundary surfaces</u>

«Butterfly grid» around a single electrode

CiAV

Results of numerical simulation

CiAY

<u>Field of the Mach number M and the temperature T_t for the "smooth channel", channel with</u> parallel and external electrode units with energy supply in the plane of symmetry

Conclusions

- Set of MW equipment to study the effect of microwave radiation on the subsonic flow in curvilinear diffuser channel with continuous and pulsed-continuous MW energy supply created and debugged;
- Calibration tests of the different electrode units were made and resonant lengths of the \bullet electrodes that provide uniform and stable generation of plasma formations across the width of the channel at different pressures 0.6-1 atm were determined;
- Influence of supplied energy level on the flow field was investigated and it was \bullet changed in variety 60-360 W at pulse-continued regimes and ~2 kW at continued mode (flow energy 40-320 kW). At low speeds $M_{in} = 0.1 - 0.4$ and MW energy input provided by pairwise-converging electrode unit the total pressure losses in channel decreased by 0.5% vs smooth channel. In case of M_{in} increase up to 0.5 - 0.8 the losses increased by 0.5-1%;
- Numerical simulation of flow field in tested channel under simplified (volume heat) \bullet physical model of MW energy input based on 3-D RANS formulation was carried out. Different placement and constructive features of the electrode units were considered and it was obtained small influence ($\Delta \sigma = 0.05\%$) on total pressure losses in channel. In case of energy supply absence there was a qualitative agreement between numerical and experimental static and total pressure distributions along the channel for similar electrode unit configurations.